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Abstract: For detecting multiple outliers in normal samples we consider some tests and their performance and also 

depicted  that which procedure is more powerful in the considered situation. The considered test statistics are ESD test, 

Grubb’s test( Ek, LK and Lk
*
) and Rosner R-Statistics(RST). Here the power of these test statistics are studied and 

necessary discussion are made on the basis of computed result. Although ESD is an one outlier procedure we have used 

here to study the performance of many outlier procedure in case of detecting single outlier. 
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1. INTRODUCTION 

           The problem of testing outlying observations, is of 

considerable importance in applied statistics. Many and 

various types of significance tests have been proposed by 

Statistician interested in the field of application. 1933, 

Rider published a rather comprehensive survey of work on 

the problem of testing the significance of outlying 

observations up to that date. The test criteria surveyed by 

Rider appear to impose as an initial condition that the 

standard deviation, , of the population from which the 

items were drawn should be known accurately. 

      Irwin‟s criteria (1925)  which utilize the difference 

between the first two individuals or the difference between 

the second and third individuals in random samples from a 

normal population. The range or maximum dispersion of a 

sample which has been advocated by Student (1927) and 

others for testing the significance of outlying observation .  

Mackey (1935) published a note on the distribution of the 

last mention statistics and by means of a rather elaborate 

procedure obtained a recurrence relation between the 

distribution of the extreme minus the mean in a sample of 

n from a normal universe and the distribution of this 

statistics in sample of n-1 from the parent. Mckey gave 

also an approximate expression for the upper percentage 

points of the distribution but did not tabulated the exact 

distribution  due to the complexity of the multiple integrals 

involved. Nair (1948) has tabulated the distribution of the 

difference between the extreme and sample mean for n = 2 

to n = 9. 

    Under certain circumstances, accurate knowledge 

concerning  may be available as, for example, in using “ 

daily control” tests the population standard deviation may 

be estimated in some cases with sufficient precision from 

past data. In general, however, as accurate estimate of  

may not be available and it becomes necessary to estimate 

the population standard deviation for the single sample 

involved or “studentized” the statistics to be need, thus 

providing a  true measure of the risks involved in the 

significance test  advocated for testing outlying  

 

observation . Thompson (1935) apparently had this vary 

point in mind when he devised an exact test in his paper 

“On  a criteria for the rejection of observation and the 

distribution of the ratio of the deviation to the sample 

standard deviation,” which appeared in 1935 

      Pearson and Chandra Sekar (1936) have given a rather 

comprehensive study of Thompson‟s criteria. They 

discussed also some very important view points which 

should be taken into consideration when dealing with the 

problem of testing outlying observations. Pearson and 

Chandra Sekar  point out that if only one of the 

observation actually came from a population with 

divergent mean, then Thompson  criteria would be very 

useful, whereas if two or more of the observations are 

truly outlying then the criteria may be quite ineffective, 

particularly if the sample contain less than about 30 or 40 

observations. 
 

Once the sample results of an experiment are available, the 

practicing statistician may be confronted with one or more 

of the following distinct situations as regard discordant 

observations  

(a) To begin with, a very frequent or perhaps situations 

that either the greatest observation or the  least 

observation in a sample may have the appearance of 

belonging to a different population then the one from 

which the remaining observations were drawn. Here we 

are contracted with tests for a single outlying 

observation.  

(b) Then again, both eth largest and the smallest 

observations may appear to be „different „from the 

remaining items in the sample. Here we are interested in 

testing the hypothesis that both the largest and the 

smallest observations are truly outliers  

(c) Another frequent situation is that either the two largest 

or the two smallest observations may have the 

appearance of being discordant. Here we are interested 

in reaching a decision as to whether we should reject the 

two largest or the two smallest observations as not being 

representative of the ting we are sampling. 
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     As to why the discordant observations in a sample may 

be outlier, this may be due to error of measurement in 

which case we would naturally want to reject or at least 

“correct” such observations. On the other hand, it may be 

that the population we are sampling is not homogeneous in 

the uni-modal sense and it will consequently be desirable 

to know this so that we may carry out further development 

work on our product if possible or desirable. 

      Grubbs (1950) made a historical comment regarding 

the outliers and formulate the problem to arrive at a 

situation. He developed two statistics for testing the 

significance of the largest observation and the smallest 

observation in a sample of size n from a normal 

population.  

     Some Grubbs-Type statistics for the detection of 

several outliers were developed by Tietjen and Moore 

(1972). They also gave the table of critical values to 

facilitated the use of these statistics. Rosner (1975) gave a 

flexible procedure which can detect from 1 up to k outliers 

and is useful for a specific number of outliers which is true 

of the procedures. He finds that his approach yields a more 

powerful procedure than the one outlier procedures 

extreme studentized deviate (ESD). ESD procedure is 

essentially a stepwise Grubbs (1950) test for a single 

outlier in either tailed is a powerful test procedure for the 

significance in the sample. 

     In this paper we have studied the power of statistics viz 

Tietjen and Moore (Ek), Rosner (RST), Grubbs, ESD, Lk 

and 
*

kL  and necessary discussion are made on the basis of 

computed results. Although ESD is an one outlier 

procedure we have used here to study the performance of 

many outlier procedure in case of detecting single outlier . 

2.TEST PROCEDURES 

 Let  X1, X2, . . . , XN  be a sample drawn from the normal 

distribution. Suppose there are k outliers. These may be all 

greater than mean or smaller than mean or out of k some 

are smaller than mean or some are larger than mean. Let n-

k observations  follow Nor(
2

0 ,  ), and k observations 

follow Nor( 
2

1, ) if less than mean and  Nor(
2

2 ,  

) if greater than mean and follow both  Nor( 
2

1, ) and  

Nor(
2

2 ,  ) if les in both side of the mean . Here  

parameters are unknown. From these  observations, we are 

to detect  k smallest or k largest or out of k some are 

smallest and some are largest observations which we 

consider as outliers.  Now the observations are arranged 

according to ascending order and denote these as, 

 Nyyy  ...21  

2.1. Extreme Studentized Deviate  (ESD) Test: 

 
The ESD procedure is essentially a stepwise 

Grubbs T- test for a single outlier in either tail. At each 

step, the ESD is calculated 

kisyyESD iii
iNj
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



 

Where i
y
_

and 
2

is are the mean and variance, respectively, 

of the sub-sample remaining after the first i-1 step and 

observation deletions. If the value of ESD is less than the 

tabulated value at the desired level of significance, then 

declare no outliers detected; if  greater than tabulated 

value then declare yN  as an outlier, delete yN from the 

sample and perform the ESD test on the reduced sample of 

size (N-1) and declare yN-1 an outlier if and only if the 

latter ESD test is significant.  A downfall of this method is 

that it require the assumption of a normal data distribution. 

Usually this assumption holds true as the sample size gets 

larger. 
 

2.2. Lk, Lk*  and  Ek  Test : 

    Tietjen and Moore (1972) generalize the Grubbs‟ two 

outliers  procedure to detecting k outliers in the sample. 

The null hypothesis that all the values have come from the 

same normal distribution against the alternative hypothesis 

that there are k larger observations have come normal 

distribution with different mean. That means these are 

outliers which are different from the remaining 

observations.  The proposed statistics is    
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This Lk statistics can be used for examining the k largest 

observations . The percentage points of this statistic are 

available in Tietjen and More(1972). 

To used the statistic for k smallest observations  as  

outliers  above statistic Lk  can be used by modifying the 

numerator by including the (N-k) largest values. If we 

denote this statistic  as Lk*  ,it can written as 
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      So, Lk and 
*

kL  statistics are used for testing k 

suspected values which are larger or smaller than the bulk 

of the sample. There is also another situation in which out 

of the k outliers some suspected values are smaller and 

some are larger than the remaining values. In this 

situation, the statistics Ek is preferred. To obtain the 

statistics Ek, let us take the sample values x1, x2, …  …xN. 

Then compute the mean of the sample, x . Then obtain the 

absolute residuals like- 

xxrxxrxxr Nn  ..,........., 2211 . 

Now denote these observations as z‟s in such a manner 

that zi is the x whose ri is the i
th

 largest. 

 Here, z1 indicates the observation which closest to the 

mean i.e. which difference is small, zN indicates the 

observation which farthest from the mean i.e. which 

difference is large. 

    The proposed statistics for testing the null hypothesis 

that all the values come from the same normal distribution 

is   
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i.e. 
kz and z indicates the mean of the (N-k) least extreme 

observations and the mean of all observations respectively. 

Table value of  Lk* and Ek  statistics are also available in 

Tietjen and Moore(1972). 

 2.3. Rosner R-Statistic (RST ): 

     Several procedure exist for the detection of a specific 

number of outliers. However, the more typical problem is 

that one does not know the number of outliers in advance 

and one wants a procedure which is reasonably powerful 

in detecting varying numbers of outliers. Furthermore, 

procedures that are designed for a specific number of 

outliers often have little power if a different number of 

outliers is present. Rosner (1975) proposed a flexible 

procedure which can detect from 1 up to k outliers . 

Suppose we are interested in a procedure which can detect 

at most k outliers where k = [pN] for some fraction of p of 

the total sample size of N.  To implement this procedure, 

delete the k smallest and k largest observations from the 

sample and calculate the mean „a‟ and standard deviation 

„b‟ of the trimmed sample. Then calculate the largest 

studentized residual in absolute value (R1) of the entire 

sample, using „a‟ and „b‟ instead of 

_

X   and s. Define R2 

to be the second largest residual etc. 

  

Specifically, let 
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        Where X(i) is the ith order statistics in a sample of 

size N 

Let 
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Where  Iq= I0 - {X
(0)

, X
(1)

, ……X
(q-1)

}, q = 2,………..k-1 

In this procedure, consider the marginal 

distributions of R1,…………,Rk and specifying find β, 

λ1(β),………..λk(β) such that  
 

                           Pr [ Ri > λi(β) ]= β,   i = 1, 2, … … …… 

k            and 
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,  Where α is 

the desired significance level.  
 

The RST many outlier procedure then has the following 

form: if the event   












k

i

iiR
1

 is true, then we 

declare that no outliers are present; if there is at least one i 

such that Ri > λi (β), i =1, 2,………k, i.e., if {

  


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
k
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iiR
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  is true and   iiRil  :max  

then we declare 
     110 ,........,, iXXX  are outliers.  

The motivation behind this procedure is that one computes 

measures of location (a) and scale (b) from the set of 

points that cannot possibly be outliers, i.e. the points that 

remain after deleting 100p% of the sample from each end. 

One then declares one of the statistics R1, R2, …….. Rk is 

large relative to its distribution. This chosen RST 

procedure is computationally the least cumbersome, and is 

about equivalent in power for a variety of alternatives to 

any of the many outlier procedures. 
 

Monte Carlo Study: 

      To study the power of test statistics we generate a 

random sample from standard normal distribution N( )1,0  

using Box and Muller(1958) technique then adding  

21,  in two observations  make these as outliers and 

1  to one observation to make one outlier respectively.. 

For each set of observations, value of the statistics are 

calculated  and compare with the theoretical value to 

accept or reject the hypothesis. If it is rejected it is counted 

and repeat the process. We have repeated 10,000 time for 

each sample size and calculated the proportion of rejected  



ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
 Vol. 2, Issue 9, September 2015 
 

Copyright to IARJSET                                              DOI 10.17148/IARJSET.2015.2909                                         46 

i.e number of rejected the null hypothesis divided by the 

total number of repetition is calculated and tabulated in 

different  tables. 

 

   

Table 1. Empirical power of  ESD, Ek and RST for n =10 

(μ1, μ2) level ESD Ek RST 

(0,0) .01 

.05 

.0123 

.0618 

.0087 

.0509 

R1=.0065  R2=.0069 

R1=.0337  R2=.0396 

(0,4) .01 

.05 

.48 

.6624 

.0999 

.3126 

R1=.0424  R2=.1825 

R1=.0667  R2=.2529 

(0,6) .01 

.05 

.9025 

.9710 

.4532 

.8115 

R1=.1607  R2=.2758 

R1=.4767  R2=.6776 

(4,4) .01 

.05 

.052 

.1560 

.0087 

.0509 

R1=.0000  R2=.0000 

R1=.0000  R2=.0001 

(4,6) .01 

.05 

.2226 

.4459 

.0125 

.0681 

R1=.0000  R2=.0000 

R1=.0003  R2=.0006 

(-4,4) .01 

.05 

.1577 

.3982 

.8268 

.9851 

R1=.0217  R2=.0512 

R1=.1110  R2=.2599 

(-4,6) .01 

.05 

.4038 

.697 

.9729 

.9995 

R1=.059  R2=.142 

R1=.2661  R2=.5175 

(-5,5) .01 

.05 

.1544 

.454 

.9727 

.9995 

R1=.0418  R2=.1158 

R1=.2054  R2=.4546 

 

Table 2. Empirical power of  ESD, Ek and RST for n = 20 

(μ1,μ2) Level ESD Ek RST 

(0,0) .01 

.05 

.0141 

.0561 

.0084 

.046 

R1=.0055  R2=.0048 

R1=.0279  R2=.0380 

(0,4) .01 

.05 

.5932 

.7695 

.3473 

.5948 

R1=.2292  R2=.2905 

R1=.5273  R2=.5424 

(0,6) .01 

.05 

.9697 

.9921 

.9285 

.9859 

R1=.7648  R2=.8702 

R1=.9510  R2=.9684 

(4,4) .01 

.05 

.3215 

.6501 

.0084 

.046 

R1=.0007  R2=.0032 

R1=.0127  R2=.0328 

(4,6) .01 

.05 

.7373 

.9374 

.0264 

.0971 

R1=.0097  R2=.0399 

R1=.0853  R2=.1951 

(-4,4) .01 

.05 

.507 

.8221 

.9997 

1.000 

R1=.1813  R2=.3969 

R1=.5025  R2=.7434 

(-4,6) .01 

.05 

.8626 

.9827 

1.000 

1.000 

R1=.574  R2=.8151 

R1=.8887  R2=.9683 

(-5,5) .01 

.05 

.7245 

.9581 

1.000 

1.000 

R1=.4256  R2=.7509 

R1=.8016  R2=.9520 

 

Table 3. Empirical power of ESD, Ek and RST for n = 30 

μ1,μ2) level ESD Ek RST 

(0,0) .01 

.05 

.0117 

.0586 

.0105 

.0497 

R1=.0066  R2=.0048 

R1=.0299  R2=.0269 

(0,4) .01 

.05 

.6437 

.7803 

.4755 

.6944 

R1=.3649  R2=.3817 

R1=.6469  R2=.5957 

(0,6) .01 

.05 

.9844 

.9945 

.9831 

.9974 

R1=.9248  R2=.9512 

R1=.9900  R2=.9865 

(4,4) .01 

.05 

.5709 

.8017 

.0105 

.0497 

R1=.0184  R2=.0433 

R1=.1196  R2=.2113 

(4,6) .01 

.05 

.9200 

.9848 

.0359 

.1174 

R1=.1403  R2=.2960 

R1=.4572  R2=.6247 

(-4,4) .01 

.05 

.6972 

.8901 

1.000 

1.000 

R1=.3486  R2=.6021 

R1=.6995  R2=.8525 
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(-4,6) .01 

.05 

.9608 

.9944 

1.000 

1.000 

R1=.8463  R2=.9483 

R1=.9779  R2=.9925 

(-5,5) .01 

.05 

.9222 

.9855 

1.000 

1.000 

R1=.7155  R2=.9269 

R1=.9409  R2=.9895 

 

Table 4. Empirical power of ESD and Lk for n = 10 

(μ1,μ2) Level ESD Lk 

(0,0) .01 

.05 

.0123 

.0518 

.0101 

.0529 

(2,2) .01 

.05 

.0463 

.1234 

.0306 

.1359 

(3,3) .01 

.05 

.057 

.1494 

.1082 

.3364 

(4,4) .01 

.05 

.052 

.156 

.2818 

.6363 

(5,5) .01 

.05 

.038 

.1444 

.5337 

.861 

(6,6) .01 

.05 

.0249 

.1235 

.7583 

.964 

(7,7) .01 

.05 

.013 

.1012 

.9016 

.9943 

 

Table 5. Empirical power of ESD and Lk for n = 20 

(μ1,μ2) Level ESD Lk 

 (0,0) .01 

.05 

.0141 

.0561 

.0087 

.0537 

(2,2) .01 

.05 

.0791 

.207 

.0597 

.1978 

(3,3) .01 

.05 

.1833 

.4062 

.2528 

      .528 

(4,4) .01 

.05 

.3215 

.6501 

.6158 

.8564 

(5,5) .01 

.05 

.4648 

.8441 

.8953 

.9814 

(6,6) .01 

.05 

.6037 

.956 

.986 

.9995 

(7,7) .01 

.05 

.7256 

.9908 

.9997 

1.000 

                                         

            Table 6. Empirical power of ESD and                

                            Lk        for n = 30 

(μ1,μ2) level ESD Lk 

(0,0) .01 

.05 

.0117 

.0546 

.0096 

.0498 

(2,2) .01 

.05 

.1024 

.2262 

.0677 

.1985 

(3,3) .01 

.05 

.2875 

.4972 

.3164 

.5580 

(4,4) .01 

.05 

.5709 

.8017 

.7260 

.8920 

(5,5) .01 

.05 

.8293 

.9569 

.9568 

.9904 

(6,6) .01 

.05 

.9567 

.9960 

.9975 

.9997 

(7,7) .01 

.05 

.9944 

.9999 

.9999 

1.000 

                     Table 7.  Empirical power of ESD and     

                                    Lk
*
 for n = 10 

(μ1,μ2) Level ESD Lk
* 

(0,0) .01 

.05 

.0123 

.0518 

.0105 

.0494 

(-2,-2) .01 

.05 

.0500 

.1216 

.0332 

.1390 

(-3,-3) .01 

.05 

.0572 

.1443 

.1165 

.3436 

(-4,-4) .01 

.05 

.0496 

.1547 

.2961 

.6260 

(-5,-5) .01 

.05 

.0360 

.1458 

.5347 

.8529 

(-6,-6) .01 

.05 

.0219 

.1241 

.7583 

.9601 

(-7,-7) .01 

.05 

.0126 

.1003 

.9039 

.9935 

 

Table 8. Empirical power of ESD and L
*

k 

for n = 20 

(μ1,μ2) Level ESD Lk
* 

(0,0) .01 

.05 

.0141 

.0541 

.0104 

.0521 

(-2,-2) .01 

.05 

.0806 

.2160 

.0639 

.1969 

(-3,-3) .01 

.05 

.1900 

.4078 

.2625 

.5182 

(-4,-4) .01 

.05 

.3247 

.6495 

.6276 

.8498 

(-5,-5) .01 

.05 

.4649 

.8490 

.8992 

.9822 

(-6,-6) .01 

.05 

.6019 

.9568 

.9890 

.9992 

(-7,-7) .01 

.05 

.7250 

.9921 

.9993 

1.000 



ISSN (Online) 2393-8021 
ISSN (Print) 2394-1588 

International Advanced Research Journal in Science, Engineering and Technology 
 Vol. 2, Issue 9, September 2015 
 

Copyright to IARJSET                                              DOI 10.17148/IARJSET.2015.2909                                         48 

Fig.1 Empirical Power of The Test Statistics 

ESD, Ek  and RST    for n=10 

 

 

 

 

 

 

Fig.3 Empirical Power of The Test 

Statistics ESD,  Ek and RST for n=30 

 

Fig. 2 Empirical Power of the Test Statistics ESD, Ek and 

RST forn=20 

 

 

 

 

 

 

Fig 5.  Empirical Power of the test 

Statistics ESD and Lk for n=20 

 

 

                       

 

 

                                                              

 

Fig.4 Empirical power of The Test 

Statistics    ESD and   Lk for n=10 
 

 

 

 

 

 

                                                         

              

 

 

 

 

                               Fig.6 Empirical Power of the Test  

                              Statistics        ESD and Lk for n=30 
 

 

 

 

 

 

 

Fig.7 Empirical Power of The Test Statistics 

ESD and Lk
*  

for n=10 
 

            

 

 

 

       

Fig.8 Empirical Power of The Test Statistics 

                          Fig.8 Empirical Power of The Test 

Statistics ESD and Lk
* 
 for n=20 
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3.DISCUSSION 

     The ESD many outlier procedure seen to be slightly 

more powerful than their many outlier counterparts in case 

of alternative (0,4) and (0,6) i.e. for one outlier. On the 

other hand, the Ek procedure is more powerful when the 

outliers are in two  sides of the mean. For example in 

table1, against the alternative (-5,5), the Ek procedure has 

overall power of .9995 while the ESD procedure has 

overall power of .454 at 5% level of significance. There is 

also one thing to noticeable that when the outliers are 

same side of the mean, i.e. (4,4) and (4,6) the power of 

RST procedure is negligible. 

   The same case arise in table 2  and table 3. Note that 

when the sample sizes increases, the power of all 

procedures increases simultaneously. For example in table 

2 and table 3, the power of Ek procedure almost 1.0000 for 

alternative (-4,4), (-4,6) and (-5,5). That is, the  

probabilities of detecting many outliers for Ek procedure 

more than the other procedures. 

   In table 4, table 5 and table 6   we have computed   

power of ESD and Lk procedure for sample sizes N = 

10,20 and 30 respectively. Here, we have seen that the 

power of  Lk procedure is higher than the ESD  procedure. 

It is observed that   when the sample size increases the 

power Lk procedure also increases. For example in table 5 

and table 6, for alternative (7,7), the power of Lk is 1.000. 

The same thing arise in Lk
*
 procedure that is shown in 

table 7 and table 8. Here the  Lk
*
 procedure seems to be  

more powerful than the ESD  procedure .As the sample 

size increases the corresponding power of Lk*  and ESD 

also increases. Note that the Lk
*
 procedure is applicable 

when the outliers are on the left side of the mean. Similar 

case happen in Lk procedure because it is also applicable 

only when the outliers are on the right side of the mean. 

For this reason, ESD procedure seems to be weaker than 

Lk and Lk
*
 procedure.  

 

     Figures 1, 2 and 3 represents the empirical power of the 

test statistics ESD, Ek and RST at 5% level when n = 10, 

20 and 30. 

 

  Figures 4, 5 and 6 represents the empirical power of test 

statistics ESD and Lk at 5% level 

for n = 10, 20 and 30. 

     Similarly, figure 7 and 8 shows the empirical power of 

test statistics ESD and Lk
*
  at 5% level for n = 10 and 20.  

4.CONCLUSION 

We have come to the conclusion that in case of single 

outlier ESD  procedure  seems to be powerful than the 

other procedures.  If outliers are lies in  right hand side 

mean Lk is better than the ESD  and If outliers are lies in  

left  hand side mean, Lk* is more powerful than the ESD.  

Furthermore, among the several multiple outlier 

procedures, Ek is found to be the best .The RST procedure 

is slightly less powerful than both Ek and ESD.                  

Example: We here give an example of how to use 

the multiple outlier procedures. We first generate 20 

observations from normal distribution N(0, 1) and adding  

5 to last two observations to introduce outliers .We have  

used the above procedures i.e  ESD, Lk, Ek, and RST  to 

see whether these procedures can detect these two outliers 

or not. 

Table 9: Generated observations from normal distribution 

Observ

ation 

Numbe

r 

Generated 

Sample 

Observ

ation 

Numbe

r 

Generated 

Sample 

1 1.92958 11 1.97983 

2 1.63060 12 1.13361 

3 0.21555 13 0.80564 

4 -0.77804 14 1.32789 

5 0.65219 15 0.42908 

6 -2.010552 16 1.46078 

7 0.59968 17 -1.54222 

8 0.82207 18 -0.71746 

9 -0.29068 19 5.43100 

10 0.59058 20 4.36602 

  

 ESD Procedure: 

     Now for generated sample, Mean,   902.00 Ix       

      Standard deviation,   749.10 Is      

589.2749.1902.043100.51 R  

6004.2424.1663.036602.42 R
 

 

Here R1 > 2.447 and R2 > 2.426 at 10% point for n =20 

and n =19 respectively. So, it is concluded that both 

5.43100 and 4.36602 are outliers. 

 

Lk  Procedure:  

     For generated sample the value of 
 

L2 = 22.028/58.093 = 0.3792, 
 

which is smaller than the 1% critical value of 0.387, so 

that the test rejects both 5.43100 and 4.36602 as outlier. 

 

Ek Procedure:  

     Here the value of E2 = 6.5582/18.155 = 0.36123, which 

is considerably less than the critical 5% value of 0.416, so 

that E2 would reject the two observations simultaneously. 
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RST Procedure:  

     To apply this procedure, first choose the following 

observations as outliers and then calculate : -2.01055, -

1.54222, 4.36602 and 5.43100 

16

97983.1..............71746.077804.0 
a             

=  0.773 

b = 0.8086 

7605.58086.0773.043100.51 R  

4435.48086.0773.036602.42 R  

Here R1 and R2 are larger than its critical value 4.64 and 

3.50 respectively. So, 5.43100 and 4.36602 are declared as 

outliers. From the above calculation it is observed that all 

the four procedures are able to detect the outliers but not in 

the same level of significant.   
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